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Abstract: The present analysis is an application of the continuous time replicator dynamic to economics. Two fypes
of problems are considered under conditions of a normalized constraint and non-negative constrains. The first model
considers a quadratic programming problem and the second considers a nonlinear programming model. The story of
the following models is: there are three or more corporations in an oligopoly market. They behave so as to maximize
their profits defined by the difference between their sales and cost functions with conjectural variations. In order to solve
the problern, we apply the varisble metric gradient projection method (VMGPM). In economics there are many models
concerning conjectural variation and Nash equilibrium. Though economic models are relatively primitive, the present
approach may be useful to examine the process of reaching equilibrium.

1. Iniroduction

The present analysis is an spplication of the
continuous time replicator dynamic ¢ economics.
Recently, evolutionary economics has developed
especially to chart the dynamic path. Economists are
interested in the path that leads to stationary points.

When the model i3 complex and has conjectures
among behavioral units, the solution is obtained by a
simulation method. - In the present analysis, we
consider the profit maximization behavior of
corporations with their conjectures.

In section 2 the numerical models are explained.
Section 3 denoctes the maximization method for the
numerical models. Section 4 considers the relationship
between the replicator dynamic process and the present
method, Section 5 reports the simulation results, and
section & presents concluding remarks.

2., Models

Two types of problems are considersd under
conditions of a normalized constraint and non-negative
constrains, The first model considers & guadratic
programming problem and the second considers a
nonlinear programming model.

The story of the following models is: there are three
or more corporations in an oligopoly market. They
behave so as to maximize their profits defined by the
difference betwezn their sales and cost functions with
conjectural variations.
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2.1 Quadratic programming problem with three
corporations '

max E(z) = (-16.5%,% + 30x%, - 0.2)
+(-22%,7 + 40x%, - 0.5)
+(-11x,% + 20%, - 0.2)
= B(x Ry + XX, 13X,)

st y=1,%20(=123) 1

2.2 Nonlinear programming problem with three
corporations

max Ex) = log 2(x, + 1
= 0.1(x%, + %% + XX 0
-exp(x,)+ 1
+log 3(x,+ 1
- O B (xyxp 253 X))
-exp{l.5x) +1
+log 5(x, + 1
- 0.3(%,%, + 2K, +x,%,))
~exp(2y,) + 1

sLEx=1,%z20@=123) )

2.3 Quadratic programming problem with one hundred
corporations

max B(x) = §,; {ax(2-%)-b)
- DYPING .2

st n=1%200=1,.,100) {3

where a3 € [19,20] are generaied randomly from the



uniformn  distribution, and b's € [0.10,0.12] are
generated randomly from the uniform distribution,

3. Optimizing Method
We consider the optimizing problem with a
normalized constraint and non-negative constraints

max E(x)
st x=Lxe2 00510 {4)

In order to solve the problem, we apply the variable
metric gradient projection method (VMGPM) which
was developed by Goldfarb (1969), Karmarker
(1984,1950), Bayer and Lagarias (1989) and
Vidyvasagar (1995). The solution is obtained as a
stationary point of the following differential equation,

dx(O)/dt = -P, (x()M (x((YVE(x())" (3
with initial condition,

ez Nix=Im{z %= 00 0} &)
where the projection matrix is defined as:

Py =T~ MM )]
The metric matrix, M, is the diagonal matrix whose i-th

diagonal element is 1/x;, and the projection matrix, P,,,
1s obtained as:

Py=I1-A (&)

where the i-th row of A is all x5, Then, we can write
the concrete form of the VMGPM for the problem as:

dx;()/dt = - (1H{IE())/dx, - T; x(DOE(x())/dx}
' &

The stationary point satisfies the Kuhn-Tucker
condition when the dynamic of the equation converges
to the stationary point.

4. An Interpretation based om the Replicator
Equation

The replicator equation has been studied in the field
of population genetics as & mathematical model for
studying evolutionary phenomena. The general form of
the replicator equation is:

ax(tdt = x{f(z(1) - g=()} (10}

(i=l,...n)
gx) = F;xE (i1}
e {3 Lix=1in{z| x 2 0G=1,. ) (12)

where x; denotes the frequency of the i-th element in
the population, f(z) denotes the fitness of the i-th
element depending on the state of the population x and
g(x) is called the mean fitness. The trajectory of the
vector field from the initial state is restricted on the
simplex S, and it denotes the evolution of the
frequencies in the population.

Fisher's equation is one class of the replicator
equation in which the fitness is defined as:

B(x) =, we (13}
@=1,...n)

wy =W (14)
(i4=1....n)

Shahshahni (1979), Sigmund (1985,1987) and Akin
{(1990) showed that the Fisher's equation can be
regarded as the gradient projection system of the mean
fitness

g0 = X 7y wixx, (1)

under the Riemannian metric on the tangent space of
the simplex 5, calied the Shehshahni metric.

In this paper, we mention the class of the replicator
equation in which the fitness is defined as the inverse
direction of the Euclidean gradient

£(x) = - OE(x)/o%;, (16}
(ii=1,...n)

where E(x): B" ~ R! is differentiabie. This is a
generalization of the Fisher's equation.

The objective of this paper is to propose a new
dynamic searching model for optimization problems
with equality and inequality constraints and indicate
that the replicator equation can be employed in this
manner.

3. Simuiation Results

We obtain the searching trajectories of the replicator
equation by the fourth order modified Runge-Kutta
method with the allowable margin of error equal to 107

1]

At first, we consider the simulation results of the
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model 2.1. We made up seven initial siates, namely .
(0.33,0.33,0,33), (0.80.1,01), (0.1,080.1),
0.1,0.1,0.8), {0.05,0.475,0.475), (0.475,0.05,0.473),
and (0.475,0.475,0.03). Figure 1 shows the variation
of the profit E(z) by the analytical solution depending
on the changes of the parameter, 8, (see mathematical
appendix). Depending on the value of 8, indicating by
the horizontal axis in Figure 1, the stationary points

move from interior to corner solutions.
_ @ ®)
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Figure 1 The Variation of the Profit E(x) by the
Analytical Solution depending on the Changes of the
Parameter, B, {8} ()

Figure 4(a) The Stationary Point ( & = 20), (b)

Convergence Time to Reach the Stationary Point (8 =

From Figures 2 though 8, the stationary path and the 20}

time to reach the stationary points are indicated, Figure
2(a) indicates that, in the case of the value of 8 as 0, the
stationary point is obtained as the interior solution, and
the convergence {akes place at about 0.4 time uniis as
indicated in Figure 2(b). In the case of § as 20, the
boundary solution is obtained in Figure 4(a), and it
took about 0.8 time units to reach the stationary point
in Figure 4(b). The variation of the convergence
process due to changes in 8 is easily understood in
looking at Figures 2(b) through 8(b). The bigger the
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value of 8, the longer it takes fo reach the stationary {a) (b}

point. However, the value of 8 exceeds 50, it takes Figure 5{a) The Stationary Point { 8 = 38), (b)
little time fo reach the stationary points because only Convergence Time to Reach the Stationary Point (& =
one corporation remains in the market, 383
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Figure 2(a) The Stationary Point ( 8 = 0), (b) Figure 6(a) The Stationary Point { 8 =42.50}, (b)
Convergence Time to Reach the Stationary Point ( 8 = Convergence Time to Reach the Stationary Point (8 =
0) 42.5)
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Figure 7(a) i Point { & = 50), ()

Convergence Time to Reach the Stationary Point { 6

Figure 8(a) The Stationary Point { 8 = 70), (b)
Convergence Time to Reach the Stationary Point ( 8 =
70)

For the model 2.2 we set up seven initial states,
namely (0.33,0.33,0,33), (0.8,0.1,0.1), (0.1,0.8,0.1),
(0.1,0.1,0.8), (0.05,0.475,0.475), (0.475,0.05.0.475),
and (0.475,0.475,0.05). Figure 9 indicates the interior
solution and convergence path.
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Figure 9 The Stationary Point

(0.1.0)

For the model2.3 we obtained the stationary points for
one hundred corporations. A hundred initial states are
set up such that x's € [0,1] are generated randomly
irom the uniform distribution under the condition that
Yi%= 1. The bigger the value of 8, the longer it takes
to reach the stationary point. However, the value of
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exceeds 40, it takes lttle time to reach the stationary
points because a few or only one corporation remains
in the market indicated in Figures 10 and 11.
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Figure 10 Convergence Time to Reach the Stationary
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Figure 12 (2),(b) and (c) depict the solutions of the
stationary point frorn a set of an initial state in the case
that 8's are 0, 30 and 50, respectively. According to
increase in 8, the number of corporations decreases in
the market. The movement of standard deviation
indicates that there is a catastrophe at the level of 8
being 40 in Figure 12(d). Before 40 their standard
deviation is nearly zero, but after 40 it suddenly jumps
due to realization of the corner solutions.
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Figure 12(a) The Solution of the Stationary point (6
= ())
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Figure 12(b) The Solution of the Stationary point (8
= 30)
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Figure 12(c) The Solution of the Stationary point {8
= 50)
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6. Conclusion

We have proposed a new dynamic searching model to
solve optimization problems with equality and
inequality constraints named VMGPM, and indicate
that the replicator equation cen be regarded as the
proposed VMGPM for the problem with normalized
and nom-negative constraints.

In economics there are many models conceming
conjectural variation and Nash equilibrium. Though
economic models are relatively primitive, this approach
may be useful to examine the process of reaching
equilibrium.
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Mathematical Appendiz: Analytical solution of the
quadratic problem

The quadratic problem is:

max E(x) =7, (~ax? + bag) + BGGX, T 1%, FX%y)



st Y, x=1Lx=>200123)

The following necessary conditions for the maximum
problem with the condition of equality and inequality
constrainis are cbiained using the Lagrange function of:

L A4, @) =-E@+L 4 () +dTix-1)

We have analytical solutions for profit maximization
depending on the value of  whose values are from 0 to
100 increasing by increments of 0.5:

(1) the unique solution at the interior of 0 <x,", %,"x%,"
<1

% ={((8-2a)8-2a) - (B - 2a)(b; - b) - (B - 22)(b; -
DIV(387 - 4(a; + 8+ 2)0 + 4(ag + gz, + a8);
0s8<9,

(2) the unique solution on the side of 0 <x.*, x," < I,
XS— = O!

X = (b, + 28 - by - O)/(2((a, + ) - 8)), % = (b, + 2a, -
by - B)/(2((a; + &) - 8)), (-67 + (2 + 1) - (b + b) +
26,8 + 2(ab;+ ab; - (& + a)by) - 4ag)/(2(a; + 8) - 6))
20

95¢8 <335

(3) the unique solution on the cormer of x," =0, x," = 1,
% =0

% =(b+22 - by - 8)/(2((a; +2)- ), %= (b; + 2 - by
- 8)2((a + &) - 8)), (-6% + (2(g; + 2)-(b, + b) + 260
+2ab; +ab; - (4 +a)by) - 4a3)(2((s +2) - 8)) 2 O;
346 <41.5

(4) the two solutions on the comner of x,” =0, x," = 1,
% =0,andx,"=0,%"=0,%"= 1

6 2 23 - b, + max{b,b,};

42 <8 <425

(5) the three solutions on the corer of x;" = 1, x," = 0,
% =0%"=0,%"=1,%"=0;, andx,"=0,%,"=0,%,"
8>2a-b+ max{b,b};

43 <6,
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